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Some notions from topological dynamics

G–topological group. A G-flow is a continuous action G ↷ X on a
compact, Hausdorff space X. A morphism π∶X → Y between
G-flows is a continuous, G-equivariant map. If π is surjective we say
that Y is a factor of X, or that X is an extension of Y .

X is minimal if every orbit is dense.

A map π∶X → Y is irreducible if every non-empty open set U ⊆ X
contains a fiber π−1(y). Equivalently for every proper closed F ⊊ X,
π(F) ⊊ Y .

If X is metrizable, this is equivalent to π being almost one-to-one,
i.e.,

{x ∈ X ∶ π−1({π(x)}) = {x}} is dense Gδ .

We say that an extension π∶X → Y of G-flows is highly proximal if π
is irreducible.



Examples

Sturmyan subshifts
Start with an irrational rotation x ↦ x + α,
choose one orbit and split every point in this
orbit into two. There is a map from this
(zero-dimensional) system to the circle which
glues together the points we split. It is
two-to-one on one (countable) orbit and
one-to-one on the rest of the points.

Two circles
One can also split every point in the circle into two. The space
becomes S1 × {0, 1}with the lexicographic order and the order
topology. This is also a highly proximal extension which is
two-to-one everywhere and but it is not metrizable.



MHP flows

Every flow X admits a universal highly proximal extension
S(X)→ X with the following property: for every highly proximal
extension Y → X, there is a map SG(X)→ Y such that the following
diagram commutes:

SG(X)

Y X .

A flow X is called maximally highly proximal (MHP) if it admits no
proper highly proximal extensions; equivalently, if SG(X) = X.

MHP flows were first considered by Auslander and Glasner for the
minimal case and by Zucker in general.



MHP flows (cont.)

Highly proximal extensions preserve many dynamical properties:
▸ minimality
▸ proximality
▸ strong proximality
▸ etc.

This implies that the universal minimal flow, the universal minimal
proximal flow, the universal minimal strongly proximal flow (the
Furstenberg boundary) are all MHP.

The operation X ↦ SG(X) is idempotent. Having a common HP
extension is an equivalence relation on flows (given equivalently by
SG(X) ≅ SG(Y)) and MHP flows form a canonical transversal for it.

MHP flows are well-behaved in many situations. However, they are
rarely metrizable: Zucker has proved that metrizability is equivalent
to their isomorphic to the completion of a precompact
homogeneous space G/H.



The Gleason cover

We denote by BP(X) the Boolean algebra of subsets of X with the
Baire property and byMGR(X) the ideal of meager sets. We let X̂
be the space of ultrafilters of the quotient algebra BP(X)/MGR(X).

There is a natural map π∶ X̂ → X given by

π(p) ∈ U ⇐⇒ U ∈ p for open U ⊆ X .

An open subsetU ⊆ X is regular if Int(U) = U . Regular open sets
form a canonical system of representatives for the quotient
BP(X)/MGR(X) and it is sometimes called the algebra of regular
open sets.

The algebra BP(X)/MGR(X) is complete and X̂ is extremally
disconnected: the closure of every open set is open.

The map π is irreducible and has the appropriate universal property
with respect to irreducible maps.



Construction of the universal HP extension

If G is discrete, we can simply take SG(X) = X̂.
However, if G has non-trivial topology, the action G ↷ X̂ is, in
general, not continuous. We would like to take the “continuous
part” of the action.

Define:

B(X) = { f ∶X → R ∶ f is Baire measurable and bounded}
M(X) = { f ∈ B(X) ∶ f = 0 on a comeager set}.

B(X) is a Riesz space: an ordered vector space with an
archimedean unit 1, which is a lattice andM(X) is an ideal.
B(X) ∶= B(X)/M(X) is also a Riesz space with norm defined by

∥ f ∥ > r ⇐⇒ {x ∈ X ∶ ∣ f (x)∣ > r is non-meager} for r ∈ R.

We have that:

X̂ = {p ∈ B(X)∗ ∶ p( f1 ∨ f2) = p( f1) ∨ p( f2), p(1) = 1}.



Construction of the universal HP extension (cont.)

E – Banach space, G–topological group G ↷ E by isometries. An
element f ∈ E is G-continuous if the map

G → E , g ↦ g ⋅ f is continuous.

The G-continuous elements form a closed subspace of E.

We let

BG(X) = { f ∈ B(X) ∶ f is G-continuous}
SG(X) = {p ∈ BG(X)∗ ∶ p( f1 ∨ f2) = p( f1) ∨ p( f2), p(1) = 1}.

Then G ↷ SG(X) is a G-flow and we have HP maps:

X̂ → SG(X)→ X .

The first construction of SG(X) is due to Zucker and uses near
ultrafilters on the algebra BP(X)/MGR(X).



Functoriality properties

The construction above also tells us what are the correct
functoriality properties of SG(⋅).

A continuous map π∶X → Y is category-preserving if π−1(F) is
nowhere dense for every nowhere dense closed subset F ⊆ Y .

SG(⋅) is a functor from the category of G-flows and
category-preserving G-flowmorphisms to the category of MHP
G-flows.

For minimal flows, every G-flowmorphism is automatically
category-preserving.



The Chabauty topology

Y–locally compact, Hausdorff space; F(Y) ∶= {F ⊆ Y ∶ F is closed}.
The Chabauty topology on F(Y) is defined by a subbasis of sets of
the form

{F ∈ F(Y) ∶ F ∩ V ≠ ∅}, V ⊆ Y open;
{F ∈ F(Y) ∶ F ∩ K = ∅}, K ⊆ Y compact.

The space F(Y) is always compact, Hausdorff. If Y is discrete,
F(Y) = 2Y . If Y = ⋃K is represented as a directed union of compact
subsets, then

F(Y) = lim←Ð F(K),

where each F(K) is equipped with the Vietoris topology.



The space of subgroups and the stabilizer map

From now on, G is a locally compact group.

We define

Sub(G) = {H ∈ F(G) ∶ H is a subgroup of G}.

G ↷ Sub(G) by conjugation and it is a G-flow.

If G ↷ X is a dynamical system, we have a natural stabilizer map

Stab∶X → Sub(G), x ↦ Gx ∶= {g ∈ G ∶ x ∈ X}.

Ideally, this map should allow to capture the information about
stabilizers of the action in a convenient way. Works well for
measure-preserving systems G ↷ (X , µ): Stab∗ µ is an IRS.



The stabilizer map (cont.)

However, in the topological setting, the stabilizer map is usually not
continuous:

{x ∈ X ∶ Gx ∩ K = ∅} is open for K ⊆ G compact; but

{x ∈ X ∶ Gx ∩ V ≠ ∅} is in general not open for V ⊆ G open.

For discrete G, the second condition is equivalent to
Fix(g) ∶= {x ∈ X ∶ g ⋅ x = x} being open for every g ∈ G (this fails, for
example, for Z↷ 2Z).

To overcome this difficulty, Glasner and Weiss suggested the
following definition for minimal flows: the stabilizer URS (uniform
recurrent subgroup) of the flow G ↷ X is defined as the unique
minimal subflow of Stab(X).



The main theorem

For discrete G, lower semicontinuity of the stabilizer map is
equivalent to Fix(g) ∶= {x ∈ X ∶ g ⋅ x = x} being open for every g ∈ G.

Theorem (Frolík)

Let f be a homeomorphism of an extremally disconnected space.
Then Fix( f ) is open.

We prove a generalization of this theorem for locally compact
groups.

Theorem

Let G be locally compact and let G ↷ X be an MHP flow. Then the
stabilizer map x ↦ Gx is continuous.



Some consequences

In view of the theorem, we may associate to any flow X its stabilizer
flow

Stab(SG(X)) ⊆ Sub(G).
This coincides with the stabilizer URS of Glasner and Weiss in the
minimal case.

Denote by Sa(G) the greatest ambit (Samuel compactification) of
G, the dual of the algebra of right-uniformly continuous bounded
functions on G. G ↷ Sa(G) is a G-flow.

Corollary (Veech)

Let G be locally compact. The action G ↷ Sa(G) is free. In
particular, G admits a free flow.

Proof.

The left action G ↷ G embeds densely in Sa(G) (as point
evaluation), so {p ∈ Sa(G) ∶ Gp = {1G}} is dense. It is also closed by
the theorem.



A word about the proof

Assume that G is second countable and let ∥⋅∥ be a proper norm on
G (every closed ball is compact). Define a metric ∂ on X by:

∂(x , y) = inf{∥g∥ ∶ g ⋅ x = y} (∞ if in different orbits).

If the flow is MHP, for every open setU ⊆ X, the function

x ↦ ∂(x ,U)

is continuous.

Main lemma

Let g ∈ G and r > 0. Then there exist n ≥ 1 and a continuous function
ϕ∶X → Rn such that for all x ∈ X

∂(g ⋅ x , x) > r Ô⇒ ∥ϕ(g ⋅ x) − ϕ(x)∥∞ ≥ r/3.


